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1
FRAME BUFFER COMPRESSION FOR
VIDEO PROCESSING DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation under 35 U.S.C. §120 of
U.S. patent application Ser. No. 12/738,067, titled “FRAME
BUFFER COMPRESSION FOR VIDEO PROCESSING
DEVICES,” filed Apr. 14, 2010, now U.S. Pat. No. 8,559,499,
which is hereby incorporated by reference in its entirety. U.S.
patent application Ser. No. 12/738,067 is a National Stage
application under 35 U.S.C. §371 of International Applica-
tion PCT/IB2007/055379, filed on Oct. 26, 2007 and titled
“FRAME BUFFER COMPRESSION FOR VIDEO PRO-
CESSING DEVICES.”

BACKGROUND OF THE INVENTION

The present invention relates to video processing and in
particular to real-time video processing in dedicated hard-
ware devices.

In the design of such dedicated hardware video processing
devices, it is generally desired to reduce the need for external
memory components, and for internal memory.

In a video processing device embodied as an application-
specific integrated circuit (ASIC) or a field-programmable
gate array (FPGA), input frames are stored in a frame buffer
usually located in external memory, because they do not fit in
the device itself. For processing, several frames are loaded
line by line to be stored in an internal memory of the device,
called line buffer.

FIG. 1 shows the typical data flow and storage involved in
a conventional video processing device 8. The input pixels 1
received at an input port 2 are stored into a frame buffer 4,
usually implemented as one or more dynamic random access
memory (DRAM) chips, via a DRAM interface 3. Then, the
video processor 6 fetches lines from the DRAM 4 through the
DRAM interface 3, storing them temporarily in the line buffer
5. The output 9 of processor 6 is fed to the output port 7 to be
transmitted to the next device to which the video processing
device 8 is connected. All image transfers are done in raster
order, i.e. each frame full line by full line, and each line of a
frame pixel by pixel from left to right.

In such a device 8, using an external DRAM 4 is required
if the video processor 6 needs to process simultaneously
pixels originating from different frames. This is necessary, for
example, in applications such as deinterlacing, frame rate
conversion, and overdrive processing in LCD timing control-
lers.

If'the video processor 6 also needs to have access to pixels
of different lines at the same time, a line buffer 5 of substantial
size needs to be present inside the device 8. Important design
parameters include the size of the DRAM 4, the available
bandwidth between the device 8 and the DRAM chip(s) 4, and
the size of the line buffer 5.

Considering input video frames of Y lines of X pixels each,
with an input frame rate of F, the input pixel rate is XxY xF not
taking into account blanking. Typical values are X=1920,
Y=1080 and F=50 or 60 FPS (frames per second). Similar
parameters X', Y' and F describe the output frame size and
frame rate. In order to output one pixel, the video processor 6
needs to have simultaneous access to a context of C lines of
the input video frames, for N different video frames. The
DRAM 4 must then be able to store at least N frames of video,
i.e. atotal of XxYxN pixels. Atthe DRAM interface, the pixel
rate is XxYXF pixels per second for writing and XxYxNxF"
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pixels per second for reading. Typical data rates are then 1
billion pixels per second, which amounts to 30 Gb/s if a pixel
is represented in RGB with 10 bits per channel. High transfer
rates between the device 8 and the DRAM 4 are not desirable
because they may require using a higher number of DRAM
chips in parallel. The video processing device (in the case of
an ASIC) then needs to have a large number of pins to access
all the DRAM chips.

The required size of the internal video buffer 5 is XxCxN
pixels. Hosting such a large line buffer in an ASIC is expen-
sive, because it increases the die size of the ASIC, and has a
negative impact on the manufacturing yield. It is thus desir-
able to limit as much as possible the size of the line buffer.

One way of reducing the size of the internal line buffer is to
perform sequential processing by splitting the images into
tiles, instead of working on full frames in raster order. This is
illustrated in FIG. 2. The input video frames 1 are written into
DRAM 4 via the input port 2 and the DRAM interface 3 like
in FIG. 1. However, the lines of the frames are not read in their
entirety at once. Instead, the frames are split horizontally into
smaller vertical windows, or tiles, and the tiles are processed
in succession. The gain is that the lines of the line buffer 5
have a length smaller than the full width of the video frame,
corresponding to the width of the tiles. The overall size of the
line buffer 5 can then be reduced in proportion. The downside
is that the tiles must overlap so that the output tiles can be
merged without any boundary artifact between the tiles. This
causes in increase in the data rate in proportion to the over-
lapping factor, which can be of 20-30%. This proportion
increases with the number of tiles. In addition, the output of
the video processor 6 cannot be directly sent to the output port
7 because it is not in the raster order, but rather in the order of
the tiles. A reordering of the pixels is necessary, and this
requires an additional transit via the DRAM 4 between the
video processor 6 and the output port 7. This can also increase
substantially the required bandwidth at the DRAM interface.
The solution illustrated by FIG. 2 allows trading a reduction
of the internal memory required by line buffers 5 with an
increase of bandwidth to the external memory 4.

Compression techniques are another way of reducing both
the required size of the internal memory and the bandwidth to
the external DRAM chip(s). One way of using compression to
this end is illustrated in FIG. 3. Between the input port 2 and
the DRAM interface 3, an encoder 10 compresses the input
pixel sequence for storage into DRAM 4. For operating the
video processor 6, a decoder 20 receives the compressed pixel
data read from DRAM 4 to restore decompressed pixel lines
written into the decompressed line buffer 15 which may con-
tain several adjacent lines forming a stripe. The video proces-
sor 6 reads pixel values from the decompressed line buffer 15,
and delivers outputs pixels 9 via the output port 7.

The bandwidth to or from the external DRAM chip(s) is
divided by the compression factor provided by the compres-
sion. The number/size of external DRAM chip(s) can be
reduced in the same factor. Applying compression in such a
context is disclosed in US 2007/0110151 A1, where a differ-
ential pulse code modulation (DPCM) scheme is used for
compression.

In certain known compression techniques, the RGB pixels
are converted to aYUYV color space, and the color channels U
are V and low-pass filtered and down-sampled by a factor of
2 horizontally. The frame is then stored in what is commonly
called YUV 422 format. Other color sub-sampling schemes
exist, likeYUV 420 0rYUV 411. See, e.g., WO 2006/090334.
Recovering the RGB pixels requires to first up-sample again
the U andV color planes, and to do the color space conversion
from YUV back to RGB. In this way, the color information is
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simply down-sampled. For certain kinds of contents, such as
video games, reducing the color resolution is a visible artifact.
Such compression schemes allow compression factors of'1.5:
1, or 2:1 in the very best case.

More efficient compression schemes such as JPEG or
JPEG-2000 are widely known. They offer a visual quality
close to lossless with compression factor of 3 to 5. They are
not adapted though, because in most cases random access to
an image region is not possible without decompressing the
entire image. Also, it is desirable that the frame buffer com-
pression process provides a constant bit rate (CBR) reduction
factor in order to ensure that the peak bit rate for transmitting
the frame buffers at a constant pixel rate is controlled.

There is a need for a new way of dealing with frame and
line buffer constraints in video processing devices. There is
also a need for a compression scheme usable in such a con-
text, which provides a good tradeoff between compression
ratio and image quality, while satisfying a CBR constraint
with a fine granularity.

SUMMARY OF THE INVENTION

A method of compressing a video signal is proposed, com-
prising:

applying a local multiscale transform to a frame of the

video signal to obtain coefficient blocks;

distributing the coefficients of each block into a plurality of

coefficient groups;

for at least one of said groups:

determining a common exponent for encoding the coef-
ficients of said group; and

determining respective mantissas for quantizing the
coefficients of said group in combination with the
common exponent;

storing coding data including each exponent determined

for a coefficient group and the mantissas quantizing
coefficients of said group in combination with said expo-
nent.

The image coefficients are grouped into relatively small
blocks of coefficients (e.g. 4x4 or 8x8 coefficients) that are
each represented with the same number of bits. A coefficient
block corresponds to a small region of the frame (e.g. 4x4 or
8x8 pixels). This allows performing a direct memory access
to a compressed frame buffer with minimal overhead.

Groups of multiscale (e.g. wavelet) coefficients are repre-
sented with a global exponent, shared with all coefficients
within the group, and individual signed mantissas. The mul-
tiscale coefficients can generally be positive or negative. The
mantissas determined for each coefficient can be seen as
positive numbers, in which case there are associated with a
sign bit, or as signed numbers. Using an exponent, a sign and
a mantissa for a single coefficient is the basic principle of all
floating point representations of numbers in computers.

The compression method affords selective access to the
frame data in a scalable way. Low-definition information can
be accessed separately at low cost, and when high-definition
information becomes necessary, additional and larger infor-
mation can be loaded from the frame buffer off a separate
layer to refine the coarse scale pixel information. This is an
advantage provided by using a local multiscale transform
such as a wavelet transform in the compression method.

Each coefficient group will generally contain coefficients
corresponding to a common scale of the local multiscale
transform. A particular case is the low-pass coefficient (high-
est scale of the transform) that will typically not be quantized
in a mantissa-exponent representation, but copied uncom-
pressed in the stored coding data. For scalable access to the
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coding data, it is convenient that the amount of coding data
stored for one coefficient group of a block is the same for all
groups corresponding to a given scale of the local multiscale
transform.
As a complement to the above compression method, there
is provided a method of decompressing a video signal from
coding data, wherein, for a frame of the video signal, the
coding data include block data for respective coefficient
blocks corresponding to respective regions of the frame in a
local multiscale transform. Each block comprises a plurality
of coefficient groups. The block data for each coefficient
block include exponents respectively associated with some of
the coefficient groups of said block and mantissas respec-
tively associated with the coefficients of said some of the
groups. The method comprises:
reading at least part of the block data for at least one
coefficient block, the read block data including the expo-
nent associated with at least one coefficient group
selected among the groups of said block and the man-
tissas respectively associated with the coefficients of
each selected group;
recovering approximated values of the coefficients of each
selected group by combining the mantissas respectively
associated with said coefficients and the exponent asso-
ciated with said selected group;
assembling at least partially said coefficient block using the
approximated coefficient values; and
applying a local inverse multiscale transform to the
assembled coefficient block.
In an embodiment, the step of reading the block data for
said coefficient block comprises selecting said at least one
coefficient group based on a target definition for the decom-
pressed signal of the frame.
Other aspects of the invention relate to an encoder and a
decoder arranged for implementing the above compression
and decompression methods. Such encoder and decoder can
in particular have application in video processing devices.
Such a video processing device according to the invention
comprises:
an encoder for compressing a video signal in the form of
coding data for successive frames of the video signal,
a memory interface for storing the coding data in an exter-
nal memory and retrieving coding data from the external
memory;
a decoder for converting retrieved coding data into a
decompressed signal; and
a video processor for processing the decompressed signal.
The encoder comprises:
a transforming unit for applying a local multiscale trans-
form to a frame of the video signal to obtain coefficient
blocks;
a mapping unit for distributing the coefficients of each
block into a plurality of coefficient groups; and
a coding data generator for generating coding data includ-
ing, for at least one of said groups:
acommon exponent for encoding the coefficients of said
group; and

respective mantissas for quantizing the coefficients of
said group in combination with the common expo-
nent.

The decoder comprises:

an extraction unit for extracting the coding data for at least
one coefficient group selected among the groups of the
coefficient block;

a computation unit for combining the mantissas forming
part of the coding data for each selected group and the
exponent forming part of the coding data for said
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selected group to obtain approximated values of the
coefficients of said selected group;

an assembling unit for assembling at least partially said
coefficient block using the approximated coefficient val-
ues; and

a transforming unit for applying a local inverse multiscale
transform to the assembled coefficient block.

When the compressed video signal is available according
to luma and chroma channels (initially or after a change of
color coordinate system), the coding data generated from the
signal component of the luma channel can be allocated more
bits than the coding data generated from the signal compo-
nent of each chroma channel. This makes it possible to opti-
mize the compression ratio while keeping a good quality of
the signal.

In order to easily access the coding data, it is convenient if
the amount of coding data stored in the external memory for
the groups of a coefficient block is the same for all coefficient
blocks obtained from a component (e.g. one RGB color, or a
luma or chroma channel) of the video signal.

Each coefficient group may be assigned a respective man-
tissa depth parameter corresponding to a number of bits rep-
resenting each mantissa forming part of the coding data for
said group. The common exponent for said group is then
determined based on the values of the coefficients of said
group and on said mantissa depth parameter. Each coefficient
group for which coding data including an exponent and man-
tissas are generated will typically be made up of coefficients
resulting from the local multiscale transform at a same scale
n, with 1=n=N, N being the number of scales of the multiscale
transform. The mantissa depth parameter is preferably a
decreasing function of the scale index n, which optimizes the
compression ratio since the fine-scale coefficients, i.e. with n
small, are more numerous and perceptually less important
than the coarse-scale coefficients.

An embodiment of the video processing device further
comprises a decompressed line buffer for storing the decom-
pressed signal along a stripe of consecutive lines of at least
one frame. The video processor is then arranged to read the
decompressed signal from the line buffer.

Alternatively, the video processing device comprises a
compressed line buffer for storing coding data transferred
from the external memory for a plurality of regions of a frame
spanning a stripe of lines of said frame, and a context buffer
for storing the decompressed signal in a context portion of
said frame, the context portion being included in said stripe of
lines and offset according to a pixel location addressed by the
video processor. The video processor is then arranged to read
the decompressed signal from the context buffer.

It may be observed that the latter embodiment may be used
with various compression schemes other than the one dis-
cussed above. Accordingly, another aspect of the invention
relates to a video processing device, comprising:

an encoder for compressing a video signal in the form of
coding data for successive frames of the video signal;

a memory interface for storing the coding data in an exter-
nal memory and retrieving coding data from the external
memory;

acompressed line buffer for storing coding data transferred
from the external memory for a plurality of regions of a
frame spanning a stripe of lines of said frame;

a decoder for converting coding data read in the com-
pressed line buffer into a decompressed signal;

avideo processor for processing the decompressed signal;
and

a context buffer for storing the decompressed signal of a
context portion of said frame, the context portion being
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included in said stripe of lines and offset according to a
pixel location addressed by the video processor.

Such an embodiment makes it possible for the compression
to reduce not only the size of the external frame buffer but also
that of the internal line buffer of the device. Only a small
context portion needs to be stored explicitly in the decom-
pressed form.

The decoder may be arranged to update the content of the
context buffer as the video processor proceeds along a line of
pixels of a frame. To do so, it deletes at least one column of
pixels on one side of the context portion and adds, on the
opposite side of the context portion, at least one other column
of decompressed pixels obtained based on coding data
retrieved from the compressed line buffer for selected regions
covering said other column of decompressed pixels.

When the coding data represent coefficients of a local
multiscale transform, the compressed line buffer may have a
first layer for receiving coding data representing first coeffi-
cients of at least one first scale for said plurality of regions
spanning the stripe of lines, and at least one second layer for
receiving coding data representing second coefficients of at
least one second scale finer than said first scale for some of the
regions of said plurality of regions spanning a narrower stripe
of the frame. The decoder is then arranged to generate the
decompressed signal of the context portion by extracting
coding data from both the first and second layers of the
compressed line buffer.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1-3, discussed above, are block diagrams of conven-
tional video processing devices.

FIG. 4 is a block diagram of a video processing device
according to an embodiment of the present invention.

FIG. 5 is a diagram illustrating a way of organizing line and
context buffers in an embodiment of the invention.

FIG. 6 is a diagram illustrating a way of distributing and
representing multiscale image coefficients in an embodiment
of the invention.

FIGS. 7 and 8 are block diagrams of exemplary encoder
and decoder according to the invention.

FIG. 9 shows diagrams illustrating the mapping of coeffi-
cients of a block onto coefficient groups in a specific example.

FIGS. 10 and 11 are diagrams illustrating the correspon-
dence between pixel regions in a video frame and coefficient
blocks resulting from an exemplary local multiscale trans-
form.

DESCRIPTION OF PREFERRED
EMBODIMENTS

Compression can be used for reducing the need for internal
memory inside a video processing device 8 as discussed in the
introduction. This is illustrated in FIG. 4. The line informa-
tion is transferred in a compressed form from the DRAM 4 to
be stored into a compressed line buffer 25 whose size, com-
pared to the decompressed line buffer 15 of FIG. 3, is reduced
by the compression factor. The decoder 20 decompresses
on-the-fly pixels from the line buffer 25 to store decom-
pressed pixels in a small-sized context buffer 30.

On-the-fly decompression of the context portion is per-
formed as the video processor 6 is proceeding along a line of
the current output frame. FIG. 5 illustrates the operation of
decoder 20 in the video processing device 8 of FIG. 4. The
compressed line buffer 25 contains coding data correspond-
ing to a horizontal stripe 51 of pixels. As an example, the
uncompressed pixels are each made of 30 bits in RGB repre-
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sentation and the compression factor is 2:1, so that the num-
ber of bits per pixel in the compressed state is 15.

The video processor 6 runs along the pixel frames in raster
order. At a given point, it is processing a pixel of coordinates
(%, y). Stripe 51 covers pixels useful for processing all pixels
of coordinates (x', y) where x' covers the width of the image.
When processing pixel (X, y), the video processor 6 needs
access to a context of decompressed pixels 52. In the example
considered here, the context portion is a rectangle [x—w;
x+w|x[y=h; y+h], where w and h are the half-width and the
half-height of the context. The decompressed pixels of the
context portion 52 are maintained in a separate storage area,
namely the context buffer 30. The decompressed pixel con-
text is much narrower than the full line buffer. It is computed
from a corresponding compressed context 55 which is part of
the stripe 51 stored in the line buffer 25. In the example, the
context of compressed pixels 55 is a rectangle [x—W; x+W]x
[v=H; y+H], with W=w and Hzh. So the height of stripe 51
must be sufficient to include 2H lines. When turning to the
next pixel to be processed, at (x+1, y), the context of decom-
pressed pixels 52 is updated as follows: the leftmost column
is dropped, and an additional column 53 of new decom-
pressed pixels is computed at added as the new rightmost
column of the context portion. This column of pixels 53 can
be derived from a small set of compressed pixel coefficients
located at 54 in the stripe 51 stored in line buffer 25. Depend-
ing on the needs of the video processing architecture using the
context of decompressed pixels 52, the shape of the context
may differ from the above simple example. It may be not
centered around the current pixel, but more generally offsetin
accordance with the pixel location x, y. For example it can be
a rectangle [x-w; x+w'|x[y=h; y+h']. It may be of non-rect-
angular shape, or even non-connected (e.g. several distinct
rectangles). In the case of non-rectangular shapes, the context
of decompressed pixels 52 may be updated by dropping one
or more columns of pixels and adding also one or more
columns of decompressed pixels. For simplicity of the
description however, the simpler case of a centered rectangu-
lar context is exemplified in the drawings.

The device shown in FIG. 4 can make use of various com-
pression schemes, for example the YUV 422, YUV 420 or
YUV 411 schemes mentioned previously. It can also be used
advantageously with the new compression/decompression
scheme described below.

In the first step of the compression process, the encoder 10
applies a multiscale transform to the pixels of the current
frame. In the following, this multiscale transform is a wavelet
transform. A low-complexity transform such as a Haar or 5-3
Daubechies wavelet transform can in particular be used. The
transform is performed with a predefined number of scales.
The transform is assumed to map integers to integers and is
performed in-place using lifting steps.

Through the multiscale wavelet transform, a correspon-
dence is established between regions of a current frame and
blocks of transform coefficients. In certain embodiments, the
correspondence may be one-to-one between image regions
and coefficient blocks, but this is not always the case.

For example, in the above-mentioned case of a wavelet
transform performed in-place, the correspondence may be as
illustrated in FIGS. 10-11. In FIG. 10, A1 denotes an image
made of pixels [[X, y] where the integer indices x and y are in
the intervals O=x<X and O<y<Y. The transform is convention-
ally arranged so that the transform of the whole image con-
tains the same number of coefficients as the number of pixels
in the image, and that the transform coefficients are indexed in
the same way. The transform coefficients C[x, y] are then
defined for the same values of x and y. In addition, the trans-
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form is local in the sense that a block A2 of coefficients C[x,
y] for px2¥=x<(p+1)x2" and qx2V¥=y<(q+1)x2" can be com-
puted from pixels with the same indices, and pixels located in
a vicinity depicted by the hatched area A3. In the illustrated
example, N=3, the blocks being made of 8x8=64 coefficients.
So in this case, coefficient block A2 corresponds to region
A2UAS3 in the image.

FIG. 11 represents the array of transform coefficients B1,
having the same size as the original image array. The inverse
transform is also local, in the sense that, in order to compute
a pixel value at x, y (depicted by the black dot B2), a limited
number coefficient blocks located around this pixel (B3) are
needed to perform the reconstruction of the pixel value. These
blocks (B3) are those corresponding to the image regions
including pixel B2.

Many video processing applications do not need a random
access with a granularity of a single pixel, but of a cluster of
pixels, or a cluster of pixels moving in raster order, recon-
structed with a pipelined wavelet reconstruction, so that the
apparently poor ratio (volume of data needed to reconstruct a
single pixel value) is in practice much more favorable.

FIG. 6 illustrates a mapping scheme applied to the trans-
form coefficients. The coefficients 61 resulting from the mul-
tiscale transform form an image that is split into several
blocks of coefficients 62, each corresponding to a small
region of the current frame. Each block of coefficients 62 is
coded with a predefined number of bits as follows. A block of
coefficients 62 is split into several groups of coefficients 63,
64, etc. Usually, all coefficients within a given group have the
same nature (same type of coefficient, same dynamic range).
For each block 62, a special group 63 is the one containing the
low-pass coefficient of the multiscale transform. This low-
pass coefficient is represented and stored with full precision
65. Each of the other groups of coefficients 64 is quantized at
66 with a so-called global exponent floating point (FP) rep-
resentation.

A possible structure of the encoder 10 is illustrated in FIG.
7. The frames received from the input port 2 are provided to a
transforming unit 70, in this case a wavelet transform unit,
which processes them in the raster order to generate the
multiscale coefficients mapped onto groups of coefficients by
a unit 71 as outlined above.

For each group of coefficients {c,, . . ., ¢,}, a global
exponent representation is built. Namely each coefficient ¢, is
approximated as:

€.,
2% m;

ey
where e is an exponent common for all coefficients within the
group, and the numbers m, designate respective mantissas for
the coefficients c;.

The operations of the coding data generator 72-74 are
sequenced as follows. A module 72 computes a global expo-
nent e from the input coeflicients {c,, ..., c,} ofa group, as
received from the mapping unit 71. Based on this global
exponent e, an adaptive quantization is applied to the coeffi-
cientsc,, ..., ¢, by the quantization module 73 to compute the
mantissas my, . . . , m,. These mantissas m, . . ., m, and the
exponent e are then assembled together in a bit packing unit
74 to produce a compressed data unit of predetermined size.

The structure ofthe corresponding decoder 20 is illustrated
in FIG. 8. The compressed data units are extracted by a bit
unpacking unit 81 which recovers the mantissas m, . .., m,
and the exponent e for each group. These are used to “dequan-
tize” reconstructed coefficients ¢, with a formula identical or
similar to (1) in the computation unit 82. The reconstructed
groups of coefficients {&, ..., &, } are assembled into recon-
structed coefficient blocks and into images of reconstructed
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coefficients by the group mapping unit 83. The decompressed
image portion is then computed by the transforming unit 84
by applying the inverse wavelet transform to the recon-
structed coefficients.
A parameter of the compression scheme is the mantissa
depth, i.e. the number of bits d on which the mantissas are
represented. By way of example, d=4. The mantissa depth
parameter is defined for each group of coefficients and it is
normally the same for all groups made up of coefficients of a
same scale.
In an exemplary embodiment, the exponent e for a group is
computed by module 72 as follows. The absolute value of
each coefficient c, of the group is written in binary form. Then
anumber ¢'is defined as the rank of the highest order non-zero
bit in all absolute values Ic,|. The exponent e is then defined as
e=e'-d+1. For instance, if d=4, and if the absolute values Ic;,l|
of the coefficients are 1101, 1000001 and 1000, the highest
order non-zero bit is in the second coefficient and corresponds
to 2°. Thus e'=6, and e=e'-d+1=3. The exponent value is then
e=3.
Each coefficient ¢, of the group may then be represented in
module 73 with a uniform quantizer of bin size 2°, with a
0-bin of size 2°*, as is customary in wavelet-based compres-
sion: m,=|c,/2°] if ¢>0 and m,=—|-c,/2°| else, where |X|
denotes the integer equal to or immediately below X. In this
way, each mantissa m, is represented with a sign bit and an
integer in the range [0; 29-1], encoded on d=4 bits. This is
done with straightforward binary operations by keeping the
bits of rank e, e+1, . . ., e+d-1 in the positive representation
of each c,, plus a sign bit. The overall budget for storing p
coefficients with a mantissa of depth d, and an exponent that
can be represented on E bits is E+p-(1+d).
On the decoding side, the dequantization is done in unit 82
by replacing each number by the central value of its quanti-
zation bin. So if m;, is 0, the decoded value &, is 0. Otherwise
if m,>0, ¢,=2°(m+%%), and if m,<0, then ¢,=2° (m,~'2).
Alternatively, the quantization model can be truly uniform
instead of having a double 0-bin. A coefficient ¢, is repre-
sented by anumber 2°m,, where m =[c,/2°] with [X] denoting
the integer closest to X. In this case, the dequantization is
simpler: ¢,=m,2°.
By way of example, the compression process uses an
N-scale wavelet transform performed “in-place” with an inte-
ger lifting scheme. The coefficient image is split into blocks
of 2¥x2" coefficients each having the same structure. The
coeflicients inside a block are denoted c[i, j] where 0=i<2"
and 0=j<2”.
Diagram 91 in FIG. 9 illustrates how a block of these
coefficients c[1, j] is arranged in the absence of reordering.
The coefficients inside each block are then grouped by scale
and orientation. In the particular case of the wavelet trans-
form, the groups are the following:
a group Gy, consisting of one low-pass coefficient c[0, 0]
at scale N;

for each scale n between 1 and N, a group G,, , ofhorizontal
wavelet coefficients c[2”1+2"7*, 2], having p=2>"""
coefficients;

for each scale n between 1 and N, a group G,, , of vertical

wavelet coefficients c[2”-1, 2"-j+2"~"], having p=2>"""
coefficients;

for each scale n between 1 and N, a group G,, ; of diagonal

wavelet coefficients c[27i+2"", 2"~j+2"‘i], having p=
223" coefficients.

The corresponding groups of coefficients are displayed in
diagram 92 of FIG. 9, and the names of the groups are written
in diagram 93.
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As illustrated in FIG. 9 for N=3, the groups are advanta-
geously reorganized to have more homogeneous sizes. For
example, groups Gy, |, G, and G, ; all have a single coefli-
cient, and are reorganized as one group Gy ,,,3=
G, UGy, ,UGy, 5. Conversely, groups G,, ;. for smaller n can
have 16 or 64 coefficients, and can be split into smaller groups
of 2x2 or 4x4 coefficients. Diagrams 94 and 95 in FIG. 9
shows how the coefficients are grouped in the case where
N=3:
groups G; ), G;, and G;; are grouped together into
Gs,14243703,1 UG5 ,UG; 55

groups G, ;, G, », and G ; are each split into four smaller
groups, i.e. G, is split into G, ; ;, G, ; 5, G, ;5 and
Gy, 4, €C.

Inthis example, the coefficients can be encoded with the bit
budget shown in Table 1.

TABLE 1
Bit budget summary for a block of 8 x 8 coefficients, case 1.

Group Number Size Exponent Mantissa (d) Sign Total
Gig 1 1 13 13
G3,14243 1 3 4 4 1 19
G, 3 4 4 3 1 20/group
Giap 12 4 4 2 1 16/group

TOTAL 64 157 63 284/block

The mantissa budgets are 4 bits for coarse-scale coeffi-
cients, 3 bits for scale 2 coefficients, and 2 bits for the scale 1
coefficients. The compressed bit rate is 284/64=4.44 bits per
pixel, i.e. a compression factor of 2.25:1 assuming a source
data rate of 10 bits per pixel.

A lower budget compression could use fewer bits for the
mantissas: 3 bits at scale 3, 2 bits at scale 2 and 1 bit at scale
1, leading to the breakdown shown in Table 2.

TABLE 2
Bit budget for a group of 8 x 8 coefficients, case 2.

Group Number Size Exponent Mantissa (d) Sign Total
Gso 1 1 13 13
Gi.11243 1 3 4 3 1 16
G, 3 4 4 2 1 16/group
Giap 12 4 4 1 1 12/group

TOTAL 64 94 63 221/block

Inthis case, the compressed bit rate is 221/64=3.45 bits per

pixel. The compression factor is 2.90:1.

The compression scheme has applications for reducing the
volume of data to be stored in external frame stores, thus
reducing (1) the size requirement of the external DRAM
chips(s) 4 and (2) the bandwidth requirement to this external
DRAM storage. For example, the encoder 10 and decoder 20
can be incorporated in a video processing device 8 having the
architecture depicted in FIG. 3, with a decompressed line
buffer 15 containing a stripe of decompressed pixels accessed
by the video processor 6.

Furthermore, the volume of data to be stored in internal line
buffers can also be reduced, thus reducing the requirement on
the size and silicon surface of the internal line buffer. In this
case, the video processing device 8 may have the architecture
depicted in FIG. 4, with a compressed line buffer 25 contain-
ing coding data for a stripe of pixels and a small-sized decom-
pressed context buffer 35 fed by the decoder 20 and read by
the video processor 6.
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When handling color images, an embodiment converts the
image in luma and chroma channels (e.g. Y, Cb and Cr), and
encodes each channel separately. The separate encoding can
be performed with different encoding parameters (for
example the number of bits allocated to the mantissa for a
same kind of coefficient). As an illustration, the luma channel
(Y) can be encoded according to Table 1, and the chroma
channels (Cb and Cr) according to Table 2. The resulting bit
budget is less than 12 bits per pixel, instead of the original 30
bits per pixel.

In another embodiment, the video processor 6, when work-
ing at location X, y and at time t does not require fine scale
information inside the line buffer at all vertical offsets. For
example, fine scale information is required for a total of 41
lines, from y-20 to y+20, and coarse scale information only is
required on 20 additional lines y+21, . . ., y+40 above said 41
lines, and also on 20 additional lines y-40, . . ., y-21 below
said 41 lines.

In order to take advantage of this, the compressed line
buffer 25 can be split into two or more layers. For example, a
coarse scale layer contains only coefficients of scale 2 or more
(groups G o, G3 1,5.3, G, , in the example of diagram 95 in
FIG. 9), and an additional refinement layer contains coeffi-
cients of scale 1 (groups G, ,, in FIG. 9). The compressed
line buffer 25 then only needs to store refinement layer coef-
ficients for 40 lines instead of 80, which provides a substantial
gainininternal memory. As a consequence, the coefficients of
the refinement layer are loaded into the compressed line
buffer later than the coarse scale layer, and discarded earlier,
and take up less space in the compressed line buffer.

Again, the coarse scale context lines may not be placed
symmetrically above and below the fine scale context (e.g. 20
lines above and 40 lines below the 41 lines). The coarse scale
context and the fine scale context may be non-symmetric,
no-rectangular and even non-connected.

In another embodiment, the video processor 6 does not
require the luma and chroma information at the same process-
ing stage, i.e. not within the same context. Again, this makes
it possible to store the chroma channels in the compressed line
buffer on less lines than, e.g., the luma channel, to load the
chroma information later into the compressed line buffer, and
to discard this information earlier than the luma information.

While a detailed description of exemplary embodiments of
the invention has been given above, various alternative, modi-
fications, and equivalents will be apparent to those skilled in
the art. Therefore the above description should not be taken as
limiting the scope of the invention which is defined by the
appended claims.

What is claimed is:

1. A method of compressing a video signal, comprising:

applying a multiscale transform to a frame of the video
signal to obtain coefficient blocks;

distributing the coefficients of each coefficient block into a
plurality of coefficient groups,

wherein each coefficient group is made up of coefficients
from the multiscale transform at a same scale; and

for at least one of the plurality of coefficient groups:

determining a common exponent for encoding the coeffi-
cients of the coefficient group; and

determining respective mantissas for quantizing the coet-
ficients of the coefficient group in combination with the
common exponent; and

storing coding data including each determined common
exponent for a coefficient group and the mantissas quan-
tizing the coefficients of the coefficient group in combi-
nation with the determined common exponent.
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2. The method as claimed in claim 1, wherein an amount of
coding data stored for one coefficient group of a coefficient
block is the same for all coefficient groups corresponding to a
given scale of the multiscale transform.

3. The method as claimed in claim 1, wherein one of the
coefficient groups of each coefficient block is made of a
low-pass coefficient which is directly included in the stored
coding data.

4. The method as claimed in claim 1, wherein an amount of
coding data stored for the coefficient groups of a coefficient
block is the same for all blocks obtained from a component of
the video signal.

5. An encoder for compressing a video signal, comprising:

a transforming unit for applying a multiscale transform to

a frame of the video signal to obtain coefficient blocks;
a mapping unit for distributing the coefficients of each
coefficient block into a plurality of coefficient groups,
wherein each coefficient group is made up of coefficients
from the multiscale transform at a same scale;

a coding data generator for generating coding data includ-

ing, for at least one of the coefficient groups:

a common exponent for encoding the coefficients of the

coefficient group; and

respective mantissas for quantizing the coefficients of the

coefficient group in combination with the common
exponent.
6. A method of decompressing a video signal from coding
data,
wherein for a frame of the video signal, the coding data
include block data for respective coefficient blocks cor-
responding to respective regions of the frame in a mul-
tiscale transform, wherein each coefficient block com-
prises a plurality of coefficient groups, each coefficient
group being made up of coefficients resulting from the
multiscale transform at a same scale,
wherein the block data for each coefficient block include
exponents respectively associated with some of the coef-
ficient groups of the coefficient block and mantissas
respectively associated with the coefficients of some of
the coefficient groups, the method comprising:
reading at least part of the block data for at least one
coefficient block, the read block data including the expo-
nent associated with at least one coefficient group
selected among the coefficient groups of the coefficient
block and the mantissas respectively associated with the
coefficients of each selected coefficient group;

recovering encoded values of the coefficients of each
selected coefficient group by combining the mantissas
respectively associated with the coefficients and the
exponent associated with the selected coefficient group;

assembling at least partially the coefficient block using the
encoded coefficient values; and

applying an inverse multiscale transform to the assembled

coefficient block.

7. The method as claimed in claim 6, wherein the block
data for each coefficient block further include a low-pass
coefficient read and assembled with the encoded coefficient
values to obtain the assembled coefficient block for the
inverse multiscale transform.

8. The method as claimed in claim 6, wherein reading the
block data for the coefficient block comprises selecting the at
least one coefficient group based on a target definition for
decompressing the frame of the video signal.

9. A decoder for decompressing a video signal from coding
data, wherein, for a frame of the video signal, the coding data
include block data for respective coefficient blocks corre-
sponding to respective regions of the frame in a multiscale
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transform, wherein each coefficient block comprises a plural-
ity of coefficient groups, wherein the block data for each
coefficient block include exponents respectively associated
with some of the coefficient groups of the coefficient block
and mantissas respectively associated with the coefficients of
some of the coefficient groups, the decoder comprising:

an extraction unit for extracting the coding data for at least
one coefficient group selected among the coefficient
groups of the coefficient block;

a computation unit for combining the mantissas respec-
tively associated with the coefficients of each selected
group and the exponent associated with the selected
group to obtain encoded values of the coefficients;

an assembling unit for assembling at least partially the
coefficient block using the encoded coefficient values;
and

atransforming unit for applying a inverse multiscale trans-
form to the assembled coefficient block.

10. A video processing device, comprising:

an encoder for compressing a video signal in the form of
coding data for successive frames of the video signal;

a memory interface for storing the coding data in an exter-
nal memory and retrieving coding data from the external
memory;

a decoder for converting retrieved coding data into a
decompressed signal; and

avideo processor for processing the decompressed signal,

wherein the encoder comprises:

a transforming unit for applying a multiscale transform to
a frame of the video signal to obtain coefficient blocks;

a mapping unit for distributing the coefficients of each
coefficient block into a plurality of coefficient groups;
and

a coding data generator for generating coding data includ-
ing, for at least one of said coefficient groups:

a common exponent for encoding the coefficients of the
coefficient group; and

respective mantissas for quantizing the coefficients of
the coefficient group in combination with the com-
mon exponent,

and wherein the decoder comprises:

an extraction unit for extracting the coding data for at least
one coefficient group selected among the groups of a
coefficient block;

a computation unit for combining the mantissas forming
part of the coding data for the selected coefficient group
and the exponent forming part of the coding data for the
selected coefficient group to obtain encoded values of
the coefficients of the selected coefficient group;

an assembling unit for assembling at least partially the
coefficient block using the encoded coefficient values;
and

a transforming unit for applying an inverse multiscale
transform to the assembled coefficient block.

11. The device as claimed in claim 10, wherein each coef-
ficient group is made up of coefficients resulting from the
multiscale transform at a same scale.

12. The device as claimed in claim 11, wherein an amount
of coding data stored for one coefficient group of a coefficient
block is the same for all coefficient groups corresponding to a
given scale of the multiscale transform.

13. The device as claimed in claim 12, wherein the at least
one coefficient group is selected based on a target definition
for processing the decompressed signal.

14. The device as claimed in claim 10, wherein the block
data for each coefficient block further include a low-pass
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coefficient assembled with the encoded coefficient values to
obtain the assembled coefficient block for the inverse multi-
scale transform.

15. The device as claimed in claim 10, further comprising
aline buffer for storing the decompressed signal along a stripe
of consecutive lines of at least one frame of the video signal,
wherein the video processor is arranged to read the decom-
pressed signal from the line buffer.

16. The device as claimed in claim 10, wherein the decoder
is arranged to update the content of the context buffer as the
video processor proceeds along a line of pixels of a frame of
the video signal, by deleting at least one column of pixels on
one side of the context portion and adding, on an opposite side
of the context portion, at least one other column of decom-
pressed pixels obtained by the decoder based on coding data
retrieved from the line buffer for selected regions covering the
other column of decompressed pixels.

17. The device as claimed in claim 15, wherein the line
buffer has a first layer for receiving coding data pertaining to
first coefficient groups made up of coefficients resulting from
at least a first scale of the multiscale transform for a plurality
of regions spanning the stripe of lines, and a second layer for
receiving coding data pertaining to second coefficient groups
made up of coefficients resulting from at least a second scale
of the multiscale transform, wherein the second scale is finer
than the first scale for some regions of the plurality of regions
spanning a narrower stripe of the frame of the video signal,
and wherein the decoder is arranged to generate the decom-
pressed signal of the context portion by extracting coding data
from both the first and the second layers of the line buffer.

18. The device as claimed in claim 10, wherein the com-
pressed video signal corresponds to luma and chroma chan-
nels, and wherein the coding data generated from the signal
component of the luma channel are allocated more bits than
the coding data generated from the signal component of each
chroma channel.

19. The device as claimed in claim 10, wherein an amount
of coding data stored in the external memory for the coeffi-
cient groups of a coefficient block is the same for all coeffi-
cient blocks obtained from a component of the video signal.

20. The device as claimed in claim 10, wherein each coef-
ficient group has a respective mantissa depth parameter
assigned thereto, corresponding to a number of bits represent-
ing each mantissa forming part of the coding data for the
coefficient group, and wherein the common exponent for the
coefficient group is determined based on the values of the
coefficients of the coefficient group and on said mantissa
depth parameter.

21. The device as claimed in claim 20, wherein each coef-
ficient group for which coding data including an exponent and
mantissas are generated is made up of coefficients resulting
from the multiscale transform at a same scale n, n being an
integer scale index between 1 and N and N being the number
of scales of the multiscale transform, and wherein the man-
tissa depth parameter is a decreasing function of the scale
index n.

22. A video processing device, comprising:

an encoder for compressing a video signal in the form of
coding data for successive frames of the video signal;

a memory interface for storing the coding data in an exter-
nal memory and retrieving coding data from the external
memory;

a line buffer for storing coding data transferred from the
external memory for a plurality of regions of a frame of
the video signal spanning a stripe of lines of the frame of
the video signal;
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a decoder for converting coding data read in the line buffer

into a decompressed signal;

avideo processor for processing the decompressed signal;

and

a context buffer for storing the decompressed signal of a 5

context portion of the frame of the video signal, the
context portion being included in said stripe of lines and
offset according to a pixel location addressed by the
video processor.

23. The device as claimed in claim 22, wherein the decoder 10
is arranged to update the content of the context buffer as the
video processor proceeds along a line of pixels of a frame of
the video signal, by deleting at least one column of pixels on
one side of the context portion and adding, on an opposite side
of the context portion, at least one other column of decom- 15
pressed pixels obtained by the decoder based on coding data
retrieved from the line buffer for selected regions covering the
other column of decompressed pixels.

24. The device as claimed in claim 22, wherein the coding
data represent coefficients of a multiscale transform, wherein 20
the line buffer has a first layer for receiving coding data
representing first coefficients of at least one first scale for the
plurality of regions spanning the stripe of lines, and a second
layer for receiving coding data representing second coeffi-
cients of at least one second scale finer than the first scale for 25
some of the regions of the plurality of regions spanning a
narrower stripe of the frame of the video signal, and wherein
the decoder is arranged to generate the decompressed signal
of'the context portion by extracting coding data from both the
first and the second layers of the line buffer. 30
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